

Slide 2

Slide 4	

The BIG PICTURE of Meiosis

- One Interphase just like Mitosis
 - · G1, S-Phase, G2
 - diploid 46 chromosomes replicate to form 92 sisters joined in pairs
- Followed by Two Cell Divisions instead of One
 - In meiosis I, homologous chromosomes separate resulting in two haploid daughters with 46 sisters joined in 23 pairs
 - it is called the reductional division
 - In meiosis II, sister chromatids separate resulting in four haploid daughters with 23 unjoined chromosomes (much like mitosis)
 - it is called the **equational division**

Constricts © 2008 Pearson Education Inc., multipling as Pearson Registrain Commission

Slide 5

Genetics is the study of heredity and variation....

- Genetic inheritance in sexually reproducing organisms
 - One gamete from mom, one from dad
 - One set of autosomes from mom, one from dad
 - One allele at each autosomal locus from mom, one from dad
 - One X from mom, one X or one Y from dad
- . Genetic variation results from mutation and mixing
 - Everyday mutation produces altered allele sequences
 - Crossover mutation mixes DNA from mom and dad chromatids
 - Independent assortment of grandparent chromosomes in meiosis
 - Random fertilization between gametes gives 70 trillion options

Copyright \odot 2068 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Slide 6

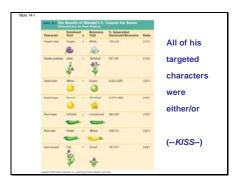
Key Terms and Definitions I

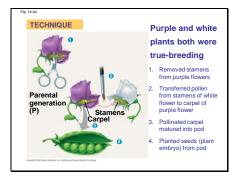
- Genome _
- Chromosome
- Gene _____
- Locus _____
- Allele ______
- Phenotype ______

. Copyright \odot 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

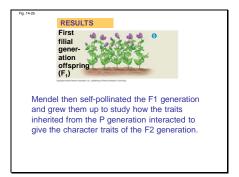
 	_
 	_
 	_
 	-
 	-
 	-
	_
 	_
	_
	Τ
 	_
 	-
 	_
	_
	_
 	_
 	_
	_
	_
	_
	_
	_

Slide 7	Key Terms and Definitions II	
	Genotype vs. Phenotype	
	gene level	
	visual level	
	protein level	
	physiological level	
	organismal level	
	Copyright O 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings	
Slide 8	How might knowing about the transmission of	
Shac o	genes (and their resultant proteins) be useful?	
	Explain the observed phenotypes around us	
	Understand the basic causes of genetic disorders	
	Predict disease and, thus, potentially prevent it	
	Make genetic changes to eradicate disease?	
	Genetically modify other organisms for our use?	
	Make changes to strengthen our species?	
	L	
		1
Slide 9	Gregor Mendel started the study of genetics in a world without any understanding of genes!	
	He was trying to determine the principles that account for	
	the passing of traits from parents to offspring.	
	There were two competing ideas at the time: The "blending" hypothesis is the idea that genetic material from	
	the two parents blends together (like blue and yellow paint blend to make green)	
	The "particulate" hypothesis is the idea that parents pass on	
	discrete heritable units He was a University of Vienna trained scientist working in	
	one of the few places where science was practiced at the time (roughly the time of the American Civil War).	
	Mendel was a really smart, well-trained scientist	
	Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Currentings	

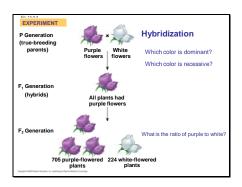

Slide 10	Key Terms and Definitions III]	
		_	
	Character		
	• Trait	_	
	True-breeding		
	• Crossing		
	Hybridization	-	
	P Generation		
	• F1 Generation		
	F2 Generation	_	
	Cupyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings		
		_	
		_	
		_	
		_	
CITAL AA		ר	
Slide 11	Key Terms and Definitions IV	_	
	Homozygous		
	Heterozygous		
	Dominant allele	-	
	Recessive allele		
	Noocasive dilete		
		-	
		_	
	Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamis Cummings		
		_	
		_	
		-	
Slide 12	Useful Genetic Vocabulary	7	
5.1dc 12		_	
	An organism with two identical alleles for a		
	character is said to be homozygous for the		
	gene controlling that character		
	An organism that has two different alleles for a		
	gene is said to be heterozygous for the gene controlling that character	_	
	 Unlike homozygotes, heterozygotes are not true-breeding. Why not? 		
	and brooding. Trily not:	_	
	Copyright © 2008 Pearson Ethecation Inc., publishing as Pearson Renjunin Currenings	J	
		_	
		_	

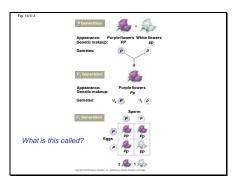

Mendel was both really smart and a little lucky!

- He picked the simplest genetic experiment possible
 - · Plant characters with only two traits
 - Single genes produce those traits
 - Thus, only two alleles for each of those genes
 - One allele was perfectly dominant, the other perfectly recessive
- He took it out to two generations
 - He crossed the parental generation
 - Then self-pollinated the off-spring to look at what genes they got
 - Only the second generation of off-spring shows the key principles

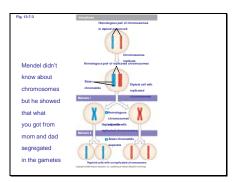

Commission C. 2008 Personal Education Inc., multiplicate as Personal Registerio Commission

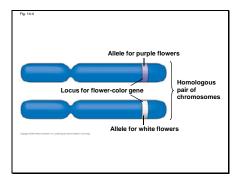
Slide 14





Slide 17

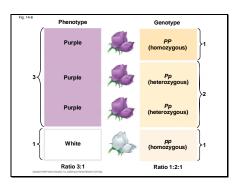


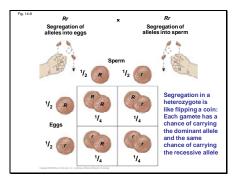

Mendel's Model in the Terms of Modern Genetics

- Alternative versions of **genes** account for variations in inherited characters
- 2. For each character an organism inherits **two alleles**, one from each parent
- If the two alleles at a locus differ, then one (the **dominant allele**) determines the organism's appearance, and the other (the **recessive allele**) has no noticeable effect on appearance
- the law of segregation, states that the two alleles for a heritable character separate (segregate) during gamete formation and end up in different gametes

Commission C. 2008 Persona Februarian Inc., multiplinary or Persona Renismin Commission

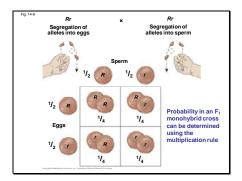
Slide 20

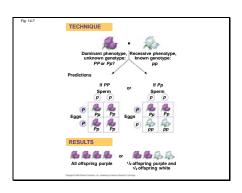




- Because of the different effects of dominant and recessive alleles, an organism's traits do not always reveal its genetic composition
- Therefore, we distinguish between an organism's <u>phenotype</u>, or physical appearance, and its <u>genotype</u>, or genetic makeup
- In the example of flower color in pea plants, PP and Pp plants have the same phenotype (purple) but different genotypes

opyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings


Slide 23



Slide 25

The Testcross

- How can we tell the genotype of an individual with the dominant phenotype?
- Such an individual must have one dominant allele, but the individual could be either homozygous dominant or heterozygous
- The answer is to carry out a **testcross**: breeding the mystery individual with a homozygous recessive individual
- If any offspring display the recessive phenotype, the mystery parent must be heterozygous

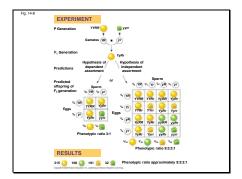
The Law of Segregation

- Stated Simply: Gametes are haploid
- Mendel derived the <u>law of segregation</u> by following a single character
- All of the F₁ offspring produced in this cross were monohybrids, individuals that are heterozygous for one character
- A cross between such heterozygotes is called a *monohybrid cross*

convicto C 2008 Pennon Education Inc., red-Substances Pennon Revisionin Commissa

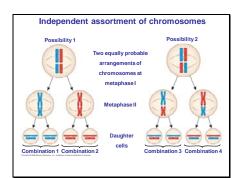
Slide 29

The Law of Independent Assortment


- Mendel identified his second law of inheritance by following two characters at the same time
- Crossing two true-breeding parents differing in two characters produces dihybrids in the F₁ generation, heterozygous for both characters
- A dihybrid cross, a cross between F₁ dihybrids, can determine whether two characters are transmitted to offspring as a package or independently

opyright © 2008 Pearson Education Inc., publishing as Pearson Benjumin Cummings

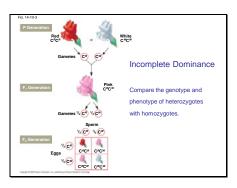
Character	Dominan Trait	٠.	Recessive Statt	F. Generation Dominant Recessive	Ratio	
Filmer salar	non Su		A.	PRINCES.	8761	Remember
Flower position	14		144	.401,207	2141	He had lots to choose
Seed color	Moi	R.	Creen .	A6023001	3811	from
Seed shape	Royal		Minde	LOAUBO	2967	
Pertition	irland	*	Constraint	802299	2901	
Podcatur	Gen		Min	GHO	2821	
Stem length	100 000	-	Dwarf	787:277	2841	


Slide 31

The Law of Independent Assortment

- Simply Stated: Mom's and dad's allele loci end up in gametes independently of their other loci
- Strictly speaking, this law applies only to genes on different, nonhomologous chromosomes
- Genes located near each other on the same chromosome tend to be inherited together
- Mendel was lucky his targets were all on different chromosomes!

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Currening


Slide 34	Review Questions		
	Which of the following about the law of segregation is false?		
	A) It states that each of two alleles for a given trait segregate into different gametes.		
	B) It can be explained by the segregation of homologous chromosomes during meiosis. C) it can account for the 3:1 ratio seen in the F2 generation of Mendel's crosses.		
	D) It can be used to predict the likelihood of transmission of certain genetic diseases within families.		
	E) It is a method that can be used to determine the number of chromosomes in a plant.		
	Mendel's second law of independent assortment has its basis in which of the following		
	events of meiosis 1? A) Synapsis of homologous chromosomes		
	B) Crossing over		
	C) Alignment of tetrads at the equator D) Separation of homologs at anaphase		
	E) Separation of cells at telophase		
		j	
Slide 35		1	
Silue 33	Extending Mendelian Genetics		
	 Mendel went for the simplest relationship 		
	between genotype and phenotype he could find		
	Many heritable characters are not determined		
	by only one gene with two alleles		
	However, the <u>basic principles of segregation</u>		
	and independent assortment apply even to		
	more complex patterns of inheritance		
	' '		
	Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjumin Currenings	J	
i		٦	
Slide 36	Mendelian Inheritance for a Single Gene		
	 When alleles are not completely dominant or 		
	recessive = <u>incomplete dominance or co-</u> dominance		
	 When a gene has more than two alleles = multiple alleles 		
	When a gene produces multiple phenotypes =		
	<u>pleiotropy</u>	1	
		1	
	Copyright © 2008 Peacon Education Inc., publishing as Peacon Benjumin Curmings	1	
	* * * * * * * * * * * * * * * * * * *	1	

Degrees of Dominance

- Complete dominance occurs when phenotypes of the heterozygote and dominant homozygote are identical.
 - Example: PP and Pp pea plant flowers are purple.
- In incomplete dominance, the phenotype of F₁ hybrids is somewhere between the phenotypes of the two parental varieties
 - Example: snapdragon flowers

Commission C. 2008 Persons Education Inc., multiplinary a Persons Registrin Commission

Slide 38

Fig. 14-11	Allele Carbohy A F B i non		Multiple Alleles: Most genes exist in populations in more than two allelic forms Example: Three alleles for the ABO blood group carbohydrates
Genotype	Red blood cell appearance	Phenotype (blood group)	
IAIA or IAi		Α	Codominance: Two
I ^B I ^B or I ^B i	*	В	dominant alleles affect the phenotype in separate, distinguishable ways
ββ	*	АВ	Both alleles are dominant and both phenotypes are expressed.
ii	L. No., anderson, and Research Designer Consequen	0	Example: AB blood type

The Dominance-Phenotype Relationship

- A dominant allele does not subdue a recessive allele; alleles don't interact
- Alleles are simply variations in a gene's nucleotide sequence
- · This results in variation in protein function
- · For any character, dominance/recessiveness relationships of alleles depend on the level at which we examine the phenotype


Slide 41

Example 1: Albinism in humans occurs when both alleles at a locus produce defective enzymes in the biochemical pathway leading to melanin.

Given that heterozygotes are normally pigmented, which of the following statements is/are correct?

- One normal allele produces as much melanin as two normal alleles.
- 2. Each defective allele produces a little bit of melanin.
- 3. Two normal alleles are needed for normal melanin production.
- 5. The amount of sunlight will not affect skin color of heterozygotes.

Example 2: Assume the last step in the synthesis of the red pigment of apples is catalyzed by enzyme X, which changes compound C to D.

Thinking about dominance and enzyme action, what can you accurately say about a heterozygote with one allele for an effective enzyme X and one allele for an ineffective enzyme

- The phenotype will probably be yellow but cannot be red.
- The phenotype will probably be red but cannot be yellow.
- 3. The phenotype will be a yellowish red.
- The phenotype will be either yellow or red.
- The phenotype will be either yellowish red or red.

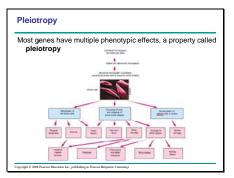
Enzyme	n X
c	▶ D
(Yellow)	(Red)

Slide 44

Frequency of Dominant Alleles

- Dominant alleles are not necessarily more common in populations than recessive alleles
- For example, one baby out of 400 in the United States is born with extra fingers or toes
- The allele for this unusual trait is dominant to the allele for the more common trait of five digits per appendage
- In this example, the recessive allele is far more prevalent than the population's dominant allele

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings


Slide 45

Multiple Alleles

Imagine a locus with four different alleles for fur color in an animal. The alleles are named D^a , D^b , D^c , and D^d . If you crossed two heterozygotes, D^aD^b and D^cD^d , what genotype proportions would you expect in the offspring?

- 1. 25% DaDc, 25% DaDd, 25% DbDc, 25% DbDd
- 2. 50% DaDb, 50% DcDd
- 3. 25% D^aD^a , 25% D^bD^b , 25% D^cD^c , 25% $D^dD^dD^cD^d$
- 4. 50% DaDc, 50% DbDd
- 5. 25% D^aD^b , 25% D^cD^d , 25% D^cD^c , 25% D^dD^d

Slide 47

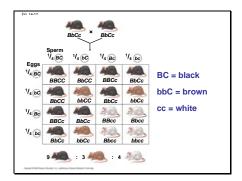
${\bf Mendelian\ Genetics\ for\ Two\ or\ More\ Genes}$

Some traits may be determined by two or more genes

- Epistasis
- Polygenic
- Environmental Impact

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cumming

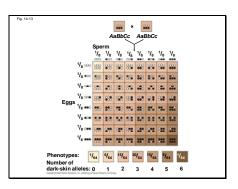
Slide 48


Epistasis

- In epistasis, a gene at one locus alters the phenotypic expression of a gene at a second locus
- For example, in mice and many other mammals, coat color depends on two genes
- One gene determines the pigment color (with alleles *B* for black and *b* for brown)
- The other gene (with alleles C for color and c for no color) determines whether the pigment will be deposited in the hair

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cumming

Slide 49



Polygenic Inheritance

- Quantitative characters are those that vary in the population along a continuum
- Quantitative variation usually indicates polygenic inheritance, an additive effect of two or more genes on a single phenotype
- Skin color and height in humans is an example of polygenic inheritance

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjumin Cummi

Nature and Nurture: The Environmental Impact on Phenotype

- Another departure from Mendelian genetics arises when the phenotype for a character depends on environment as well as genotype
- The **norm of reaction** is the phenotypic range of a genotype influenced by the environment
- For example, hydrangea flowers of the same genotype range from blue-violet to pink, depending on soil acidity

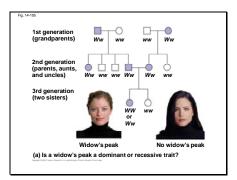
Commissis © 2008 Persons Education Inc., multiplinar as Persons Renismin Commissa

Slide 53

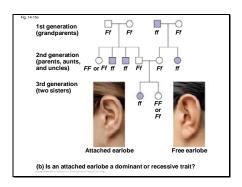
Fig. 14-14

Some alleles are heatsensitive

ex. Arctic foxes make fur pigment only when the weather is warm


Slide 54

Pedigree Analysis


- A pedigree is a family tree that describes the interrelationships of parents and children across generations
- Inheritance patterns of particular traits can be traced and described using pedigrees
- Pedigrees can also be used to make predictions about future offspring
- We can use the multiplication and addition rules to predict the probability of specific phenotypes

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjumin Cummin

 _
 _
_
_
_

Slide 56

Slide 57

Many genetic disorders are inherited recessively

- Recessively inherited disorders show up only in individuals homozygous for the allele
- Carriers are heterozygous individuals who carry the recessive allele but are phenotypically normal (i.e., pigmented)
- Albinism is a recessive condition characterized by a lack of pigmentation in skin and hair

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cumming

 _
 _
_
_
_

	Pare	ents	
	Normal Aa	Normal Aa	
	Sperm	a	
ggs	AA Normal	Aa Normal (carrier)	
a	Aa Normal (carrier)	<i>aa</i> Albino	

Slide 59

Many genetic disorders are inherited recessively

- If a recessive allele that causes a disease is rare, then the chance of two carriers meeting and mating is low
- Consanguineous matings (i.e., matings between close relatives) increase the chance of mating between two carriers of the same rare allele
- Most societies and cultures have laws or taboos against marriages between close relatives

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cumming

Slide 60

Recessive Disease I: Cystic Fibrosis

- Cystic fibrosis is the most common lethal genetic disease in the United States, striking one out of every 2,500 people of European descent (1 in 25 are carriers)
- The cystic fibrosis allele results in defective or absent chloride transport channels in plasma membranes
- Symptoms include mucus buildup in some internal organs and abnormal absorption of nutrients in the small intestine

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjumin Cummings

Recessive Disease II: Sickle-Cell Disease

- Sickle-cell disease affects one out of 400 African-Americans
- 1 in 10 African-Americans have sickle cell trait
- The disease is caused by the substitution of a single amino acid in the hemoglobin protein in red blood cells
- Symptoms include physical weakness, pain, organ damage, and even paralysis

Commission C. 2008 Personal Education Inc., multiplicate as Personal Registerio Commission

Slide 62

Dominantly Inherited Disorders

- Some human disorders are caused by dominant alleles
- Dominant alleles that cause a lethal disease are rare and arise by mutation
- Achondroplasia is a form of dwarfism caused by a rare dominant allele

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjumin Cummings

Fig. 14-17			
	Par	ents	
	Dwarf Dd :	Normal dd	
	Sperm D	(d)	
Eggs	<i>Dd</i> Dwarf	dd Normal	
Ø	<i>Dd</i> Dwarf	dd Normal	

Slide	64

Huntington's Disease

- **Huntington's disease** is a degenerative disease of the nervous system
- The disease has no obvious phenotypic effects until the individual is about 35 to 40 years of age

The same and the s

Slide 65

Multifactorial Disorders

- Many diseases, such as heart disease and cancer, have both genetic and environmental components
- Little is understood about the genetic contribution to most multifactorial diseases

opyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Slide 66

Integrating a Mendelian View of Heredity and Variation

- An organism's phenotype includes its physical appearance, internal anatomy, physiology, and behavior
- An organism's phenotype reflects its overall genotype and unique environmental history

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

 	 	 	 	
 		-		